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In Appendix A of [1], R. Hough stated the following:
For k > 1, recall that we define the measure on Zk,

νk =
1

2k + 1

(
δ0 +

k∑
j=1

(δej + δe−j)

)

and that we write

ηk(σ, x) =
1

(2πσ2)k/2
exp

(
−||x||

2
2

2σ2

)
for the density of the centered standard normal distribution on Rk. In this appendix, we
prove

Lemma 1. Let n, k(n) ≥ 1 with k2 = o(n) for large n. As n→∞ we have∥∥∥∥∥ν∗nk ∗ 1
[− 1

2
, 1
2)
k − ηk

(√
2n

2k + 1
, ·

)∥∥∥∥∥
TV(Rk)

= o(1).

Actually, a stronger estimate is proven, which is a local limit theorem on Rk.

Lemma 2. Let n, k(n) ≥ 1 with k2 = o(n) for large n. Uniformly for α ∈ Zk such that

||α||22 ≤ 2kn
2k+1

+ n logn√
k

, and ||α||44 � n2

k

(
1 + logn√

k

)
, as n→∞,

ν∗nk (α) = {1 + o(1)}ηk

(√
2n

2k + 1
, α

)
.

The goal of an ongoing research project is to prove this result for other, more
general measures on Zk. Understanding the proof of these two lemmas seems to be a
natural starting point on how to achieve this. We do a quick review of the steps taken.

The easier part is showing that Lemma 2 implies Lemma 1.

Lemma 2 implies Lemma 1. Both ν∗nk ∗1[− 1
2
, 1
2)
k and ηk

(√
2n

2k+1
, ·
)

are measures that con-

centrate at the origin. So it suffices to estimate the difference

ν∗nk ∗ 1
[− 1

2
, 1
2)
k(x)− ηk

(√
2n

2k + 1
, x

)

1



for ‖x‖22 ≤ 2kn
2k+1

+O () .

For x ∈ Zk satisfying this upper bound and for y ∈
[
−1

2
, 1
2

)k
, it is not hard to see that

ηk

(√
2n

2k + 1
, x+ y

)
= (1 + o(1))ηk

(√
2n

2k + 1
, x

)
exp

(
−(2k + 1)x · y

2n

)
.

Thus,∫
[− 1

2
, 1
2)
k

∣∣∣∣∣ηk
(√

2n

2k + 1
, x+ y

)
− ηk

(√
2n

2k + 1
, x

)∣∣∣∣∣ dy
= ηk

(√
2n

2k + 1
, x

)(
o(1) + (1 + o(1))

∫
[− 1

2
, 1
2)
k

∣∣∣∣exp

(
−(2k + 1)x · y

2n

)
− 1

∣∣∣∣ dy
)
.

For ‖x‖22 � 2kn
2k+1

+ n logn√
k

, using concentration of the measures and Azuma’s inequality,
it can be shown that∫

[− 1
2
, 1
2)
k

∣∣∣∣exp

(
−(2k + 1)x · y

2n

)
− 1

∣∣∣∣ dy = o(1).

Let

B =

{
x ∈ Zk : ‖x‖22 ≤

2kn

2k + 1
+
n log n√

k
, ‖x‖44 ≤ C

n2

k

(
1 +

log n√
k

)}
.

Using the above estimates we get

∑
x∈B

∫
[− 1

2
, 1
2)
k

∣∣∣∣∣ηk
(√

2n

2k + 1
, x+ y

)
− ηk

(√
2n

2k + 1
, x

)∣∣∣∣∣ dy
≤ o(1)

∑
x∈B

ηk

(√
2n

2k + 1
, x

)
= o(1)

∑
x∈B

(1 + o(1))ν∗nk (x) = o(1).

The last line follows from Lemma 2.
Since ∑

x∈B

∫
[− 1

2
, 1
2)
k
ηk

(√
2n

2k + 1
, x+ y

)
dy = 1 + o(1)

and ∑
x∈B

ν∗nk (x) = 1 + o(1),

both quantities can be compared, so

∥∥∥∥∥ν∗nk ∗ 1
[− 1

2
, 1
2)
k − ηk

(√
2n

2k + 1
, ·

)∥∥∥∥∥
TV(Rk)
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=
∑
x∈Zk

∫
[− 1

2
, 1
2)
k

∣∣∣∣∣ηk
(√

2n

2k + 1
, x+ y

)
− ηk

(√
2n

2k + 1
, x

)∣∣∣∣∣ dy = o(1).

The last equality comes from splitting Zk into B and Bc and summing over each
x ∈ Bc separately.

Remark 1. From the proof of this, it is safe to assume that if an analogous to Lemma 2
can be proven for more general measures, then Lemma 1 will follow easily.

Lemma 2. Lemma 2 is the result of a long and detailed computation of the Saddle-Point
method.

Let f be the probability generating function of νk, that is,

f(z1, . . . , zk) =
1

2k + 1
(1 + z1 + z−11 + . . .+ zk + z−1k ) = E(zX1

1 · · · z
Xk
k ),

where X = (X1, . . . , Xk) has the law of νk. We have νk(α) = Cα[f ], where

Cα[f ] =

(
1

2πi

)k ∫
|z1|=R1

· · ·
∫
|zk|=Rk

f(z1, . . . , zk)

zα1
1 · · · z

αk
k

dz1
z1
· · · dzk

zk
.

This is true for positive Rj because of Cauchy’s integral formula.
The probability generating function associated to ν∗nk is fn. By symmetry, we may

assume α ≥ 0 coordinate-wise. Thus,

ν∗nk (α) =

(
1

2πi

)k ∫
|z1|=R1

· · ·
∫
|zk|=Rk

f(z1, . . . , zk)
n

zα1
1 · · · z

αk
k

dz1
z1
· · · dzk

zk

=
1

Rα1
1 · · ·R

αk
k

∫
(R/Z)k

f0(θ1, . . . , θk)
ne(−α · θ)dθ,

where e(y) = exp(2πiy) and

f0(θ1, . . . , θk) = f(R1e(θ1), . . . , Rke(θk)).

Let Dsm be the domain

Dsm =

{
θ ∈ (R/Z)k : ‖θ‖∞ ≤

1

12

}
.

In Dsm, it is possible to define F (θ) = log f0(θ1,...,θk)
ne(−α·θ)

R
α1
1 ···R

αk
k

.

To apply the Saddle-Point method, we want to find the Rj that solve the stationary-
phase equation for F (θ).

In [1], the proof is bolstered by some lemmas which roughly state:

1. Find partial derivatives of F (θ) up to a large enough order.

2. Find a solution for the stationary phase equation; find the leading terms of the Rj.
Express f0(0) with the correct leading terms and order.

3. Express the correct order of the partial derivatives of F .

3



4. Find a good enough estimate for F (θ)− F (0).

5. Bound f0(θ)/f0(0).

Items 1-4 are used to estimate the integral in Dsm, while Item 5 is used in D c
sm. Upon

inspection of [1], we find that Item 2 of the previous list is the most crucial part of the
lemma.

Finding the derivatives is important, but can be done symbolically regardless of which
probability generating function we get.

However, for Item 2, we see that there is a strong dependence on the fact that, if
0 ≤ a ≤ b and Rj ≥ 1, then solving for Rj1 in Rj1 +R−1j1 = a and for Rj2 in Rj2 +R−1j2 = b
yields Rj1 ≤ Rj2 .
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